
JOURNAL OF ONLINE ENGINEERING EDUCATION, VOL. 4, NO. 2, ARTICLE 2

Reducing Instructional Barriers Through

Software Virtualization
I.W. Wait

Marshall University, Huntington, West Virginia, U.S.A

Abstract— Engineering educators sometimes avoid

incorporating computerized design tools into courses that

might otherwise benefit from them due to the complexity of

supporting software applications. Between the challenges of

distributing installation files, helping students to

troubleshoot hardware incompatibilities, ensuring licensing

compliance, and coordinating software installation on

shared lab computers, the costs of software incorporation

are sometimes seen to outweigh the potential benefits. One

increasingly accessible solution to many of these issues is the

virtualization of software, wherein software is installed and

maintained on a centralized server remotely accessed by

client machines via the internet. By eliminating many of the

challenges associated with localized software, virtualization

can reduce both the real and the perceived costs of software

integration, while preserving many instructional benefits

that can arise through software incorporation.

A case study is described to illustrate methods that can be

implemented to virtualize software. This case study also

highlights some of the pedagogical benefits resulting from a

brief, casual exposure to engineering software that would

not ordinarily justify the effort of making locally-installed

software available to students. Software virtualization was

utilized in a junior-level fluid mechanics course for civil

engineering students. Feedback from students indicates a

favorable response to virtualization as a means of software

accessibility, and a favorable view of the small learning

activities that were enabled by this access.

Index Terms — Software, Virtualization.

Introduction

In many engineering programs, software instruction is
segregated into a few key courses where learning how to
use the program under consideration is the primary
objective of the course. Examples include Computer
Aided Drafting (CAD) courses, Geographic Information
Systems (GIS) courses, and programming courses in
various computer languages. Except for these major
software-themed classes, computer programs that may be
related to the subject being taught are often not
incorporated into the course curriculum, aside from a few
instances of common, unspecialized utilities (e.g.,
Microsoft Excel, Matlab, etc.) Although many instructors
are already aware of the potential benefits of exposing
students to design software, some hesitate to actually
implement software instruction in their courses because of
access barriers, perceived inconvenience, and technical
challenges.

Oftentimes, non-software-focus classes do not have
dedicated desktop computers available in the classroom,
which limits the potential for installation of software onto
university-owned machines. In other cases, where
university-owned computers are available, IT departments

may have lengthy lead times or a complex approvals
process for instructors to request software installation.
Some instructors may overcome these barriers by
choosing to make software available to students for
installation on their personally-owned computers.
However, distributing large software installation files can
be a challenge. Likewise, the process of walking new
users through potentially cumbersome and confusing
license activation procedures is often enough to dissuade
instructors from attempting software incorporation unless
the software program is a major part of the course.

Complicating matters further is that personally-owned
computer hardware is often non-standardized – students
own a variety of different machines, and run a variety of
different operating systems. The prospect of providing
technical support to students – each who has installed
software on a different computer, and may be experience a
different technical problem – can be enough to dissuade
an instructor from integrating software into a course.

Fortunately, the rise of cloud computing and the ease of
access to server-hosted, virtualized installations of
software can eliminate many of the implementation
barriers that might otherwise cause instructors to feel that
the cost of teaching software outweighs the learning
benefits. A variety of commercial and open-source
virtualization options and providers (e.g., Citrix Xen,
VMware vSphere,, Microsoft Hyper-V, and others) enable
any program to be managed and operated at a fraction of
the inconvenience to the end-user.

Within academic instruction, virtualization has been
utilized extensively in computer science settings for a
variety of purposes, including unprotected network
security testing for which a ‘real’ hardware environment
would represent a security risk [1], and to simulate and
investigate the performance implications of different
router network configurations without actually needing
network hardware [2]. Likewise, virtualization has been
utilized for making multiple operating systems available
to students within a single physical machine [3].

A virtualized software package can be configured to
appear and function the same as if the application were
instead operating in a stand-alone mode on a lab or
personal computer. Additionally, since virtualization
clients are often based on cross-platform tools that exist
for multiple operating systems (e.g., Mac, Linux), access
is enabled for students using otherwise unsupported
operating systems. Engineering packages that operate only
in a Windows environment, for example, can become
accessible to Mac and Linux users if those users connect
to a Windows-based server hosting virtualization. Rather
than running the desired program on a local computer,
virtualization utilizes the local machine to view and
control the program that is being run remotely.

JOURNAL OF ONLINE ENGINEERING EDUCATION, VOL. 4, NO. 2, ARTICLE 2

In the case-study described herein, students utilized a
server-hosted, locally-controlled hydraulic design package
(i.e., Bentley WaterGEMS) to conduct an in-class
demonstration and out-of-class assignment to support their
learning of three fluid mechanics course topics: the
hydrostatic equation, energy loss in pipes, and pipe
network optimization. It is uncommon to introduce a
sophisticated hydraulic design package to students in a
first course in fluid mechanics. Such a course has content
that predominantly leans towards ‘core knowledge’ topics
rather than application and/or design. However, targeted
software exposure can support teaching of fundamental
concepts by enabling students to rapidly solve many
different problems and through this iteration develop a
‘feel’ for how equations behave. Students have a sense of
accomplishment when learning how to operate industry-
standard design software, and also come to develop a
broader vision for the purpose of the fundamental
principles that are being learned, and the applied direction
for where course topics lead.

A. Traditional Challenges of Software Implementation

Although many instructors recognize the value of
incorporating software instruction and learning activities
into the courses they teach, there are a variety of technical
and logistical hurdles that typically stand in the way.
These hurdles introduce inconvenience to the instructor
and to students, and serve as powerful dis-incentives to
attempting to incorporate software training into courses.
Among the challenges are:

Software installation must be coordinated with IT
managers – In some cases, instructors do not have
administrative rights to themselves install programs onto
lab or classroom computers. Thus it is required to
coordinate installation with IT managers, who may not be
able to install new software onto machines mid-semester.
In such instances, the requirement to request the addition
of software far in advance of when it will be used in class
may constrain the opportunity for new learning activities
to be run.

Computer lab crowding – Since computer labs are
generally already used for courses that do traditionally
contain a software component (e.g., CAD, senior-level
design courses, etc.), it may be that there is limited extra
capacity in computer labs for new assignments and
utilizations to be introduced.

Course is not taught in computer lab – For many core
knowledge type courses, where fundamental concepts are
of primary concern and software is not typically utilized,
the course will often be taught in a classroom that does not
include access to computers. Thus it is difficult to provide
computer access to students for just one or two class
periods when a brief software demonstration is desired.

Heterogeneity among student-owned computers –
Among computers that run MS Windows, students
generally own a wide variety of different computer types,
manufactured by many different manufacturers and
running a variety of different operating systems (including
32-bit vs. 64-bit). These differences inevitably lead to
errors that must be resolved when students install software
onto their local machines. Being thrust into the role of

‘software installation technical support’ can be a powerful
dis-incentive against incorporating a software component
into a course for an instructor with limited time or ability
to troubleshoot such issues.

Licensing complexities – In some cases where a
university has paid for a license to a particular program,
that license may not allow students to install versions of
the program onto their personally owned computers. In
such cases, and where other factors limit availability to
software.

Cross-platform non-operability – With the increasing
popularity of non-Windows operating systems (e.g.,
Linux, Mac), more students own computers for which the
operating system is not compatible with the software to be
taught.

These challenges can be mitigated, and in some cases
eliminated entirely through virtualization of software
applications. For purposes of comparison, whereas
introducing a software application to students previously
required the instructor to commit approximately 10 hours
per semester (much of which was helping students debug
faulty software installations and sort through licensing
issues), by implementing software virtualization, the time
requirement was reduced to approximately 2 hours,
including prep time before class demonstrations. In
subsequent semesters, the time savings would likely be
even more favorable for virtualization.

B. Benefits of Software Virtualization and Simplified
Program Access for Students

“Virtualization” of software, such that it is installed and
operated on a remote server to which students connect
when they wish to run the program in question, can reduce
or eliminate each of the difficulties identified above.
During virtualization, the client computer merely acts as a
‘window’ to the remotely-installed and run software
program, such that a user is able to see the software-
generated screen, interact with the program, and issue
commands to it, but since the program is actually hosted
remotely, this means that it is the remote server that must
have the hardware and software required to run the
program. This virtualization technique simplifies
academic implementation of software in a number of
ways.

By making it possible for students to operate software
without it actually needing to be installed on a computer,
instructors no longer need to coordinate installation of
software with the IT managers who control classroom and
computer lab machines. This introduces flexibility to
decide on which programs to utilize during the semester
itself, where previously this may not have been possible.

Likewise, virtualization can overcome the problems
associated with not enough computers in a classroom or
computer lab, since most university students already own
a PC and through virtualization can easily operate the
needed program without having to install it. Since
software is run without being installed, the challenges and
irritations associated with installation, licensing, and
cross-platform non-operability are avoided. Instead,
students must only configure the small client applet that
allows them to connect to the remote server, and are then

JOURNAL OF ONLINE ENGINEERING EDUCATION, VOL. 4, NO. 2, ARTICLE 2

able to bring up the program as needed, even if their
machine wouldn’t otherwise have adequate RAM, a
compatible operating system, or any of the other
requirements that sometimes stand in the way of their
installing software programs locally.

C. Virtualization Case Study – Student Experience

While running software virtually is significantly less
cumbersome than installing it locally, there are still some
initially unfamiliar steps that must be followed for use. In
the fluid mechanics course described herein, the following
was the workflow that students had to follow in order to
utilize the Bentley Systems, Inc. hydraulic design software
“WaterGEMS.”

Download and install virtualization client. Students
clicked on a link that was provided by the instructor. This
link is what is used to trigger the virtualization of the
WaterGEMS program any time the student wished to
access it (whether on campus or off). If the requisite client
software (in this case “Citrix Receiver”) is not installed on
the student machine, then the provided link automatically
provides an intuitive and easy way for the user to install
the client.

Since administrator rights were not required to install
the client, this meant that students could access to the
virtualized WaterGEMS even on computers where they
have limited (i.e., non-administrator) accounts. This is a
significant departure from the rights generally required to
install local software.

Trigger software virtualization. Once the client software
was installed and running in the background as evidenced
by an icon displayed in the computer’s system tray,
students once again clicked on the instructor-provided
access link to trigger virtualization of WaterGEMS. Upon
allowing access in a security warning dialog box, the
virtualized version of the program software opens, along
with any pre-configured program files that the instructor
wishes to have loaded into the program upon initiation of
the virtualization link. Likewise supporting programs can
be automatically called to load, and in this case Adobe
Reader was used to display an electronic copy of the
assignment on screen.

The student’s view of the virtualized WaterGEMS
program window was identical to the program windows
available when the software is installed locally. All of the
same program functionality was available, including all
program menus and buttons, the option to save program
files onto the students’ local machine, and the ability to
print to locally-connected printers. Thus the student
experience when using virtualized WaterGEMS is nearly
identical to using a locally-installed version of the
program, and in fact users are able to switch back and
forth between the two with files saved from either
environment.

A brief (~3 minute) screen-capture video illustrating the
software process utilized and one of the learning activities
implemented in this case study was provided to students
after the in-class demonstration. This video is available
for viewing at:

http://www.youtube.com/watch?v=g_CzboAu63A

D. Server Specifications and Performance

For purposes of the pilot test that was conducted, the
server hosting the WaterGEMS software was a cloud-
based server managed by Bentley. However, university IT
departments often have existing experience with
virtualization servers, and could potentially be called upon
to host at the university-level the applications that are to
be used for instructional purposes.

The technical specifications of the remote server
hosting the software (Intel Xeon @ 2.45 GHz with 7.5 GB
main memory running 64-bit Windows Server 2008 R2
Datacenter), coupled with the requirements of the
program(s) being virtualized and the virtualization
software used, can limit the number of simultaneous users
that can be accommodated via remote connection from a
single server. In the case of the single server that was
utilized to host virtualization for this course (which was
not designed for many simultaneous users, but rather to
offer student’s with at-home access), approximately 15-20
users could be connected at any single time. Additional
simultaneous connections above this limit resulted in users
not being able to connect to the server and/or decreased
performance. Depending on the number of servers used,
CPU and RAM configuration of each, the virtualization
software utilized, and the specification of program or
programs being virtualized, the number of users that can
be accommodated may be significantly more than or
fewer than those mentioned above.

The initial computational load associated with making a
connection to the server and beginning the virtualized
programs (i.e., both WaterGEMS and Adobe Reader for
each user) was significantly higher than the server
resources utilized once the start-up process was finished
and the program was in operation. Thus, having an entire
classroom of students connect to the server at a single
time, such as when an instructor begins an in-class
demonstration, could lead to reduced performance and/or
system difficulties if the virtualization servers are not
designed to accommodate simultaneous use.

Network bandwidth is another factor that may limit
feasibility of software virtualization. The virtualization
software that was utilized is known to be extremely
efficient with respect to connection bandwidth
requirements; tests have shown that as little as 200 Kbps
per user bandwidth is required, and network latency as
high as the 100’s of milliseconds is acceptable to maintain
software interactivity. Only one student reported concerns
that may have been related to insufficient bandwidth and
its potential for performance degradation.

E. Student Response and Feedback

A brief survey was administered to students in-class,
following their submission of the assignment, in order to
characterize student opinion about the learning experience
and to assess whether any technical issues limited their
ability to successfully complete the activity. A total of 29
students (out of 31 enrolled in the course) completed the
survey.

JOURNAL OF ONLINE ENGINEERING EDUCATION, VOL. 4, NO. 2, ARTICLE 2

Table 1 – Results of student feedback on learning activity
survey.

How difficult was it to learn to use WaterGEMS? N = 29

 3 – VERY difficult. This software should not be taught to
students in my position.

0

 2 – Somewhat challenging, but not too difficult for students
in my position.

18

1 – It was easy. 11

In the context of better understanding the hydrostatic
equation, what is your opinion about the WaterGEMS
assignment that you completed? From an educational
standpoint…

N = 29

 5 - It was a very useful learning activity. It had significant
positive impact on my understanding.

10

 4 - It was a somewhat useful learning activity. 15

 3 – Neutral 4

 2 - It was not a useful learning activity. 0

 1 - It was a very useless learning activity. It actually made me
understand hydrostatics LESS.

0

Did you view the screen-recording video? N = 29

 Yes 7

 No 22

To complete the homework assignment, did you use the
Virtualized version of WaterGEMS, a lab computer with
WaterGEMS, or did you install WaterGEMS on your
home computer? (Select all that apply.)

N = 29

 Virtualized 18

 Lab computer 13

 Installed on own machine 2

If you used the Virtualized version of WaterGEMS, did
you encounter any problems?

N=18

Yes 5

 No 13

How interested are you to see more of your academically
required engineering software and assignments provided
online (i.e., using a remote delivery 'Virtualization'
system, rather than having to access software in the lab)?

N=29

5 - Very Interested 14

4 - Somewhat interested 11

3 - Neutral 4

2 - Not interested 0

1 - Very uninterested - would prefer that it not happen at all 0

As summarized in Table 1, 18 of 29 students (i.e., 62%)
completed some or all of the assignment utilizing the
virtualized (i.e., remotely-operated, server-hosted) version
of the program. This is significant because students also
had ready access to a local installation of the program in a
computer lab adjacent to the classroom where the course
is taught, such that they could have completed the
homework assignment on campus without the need to
configure the virtualization applet on their personal
computer. However, the benefit of being able to operate
the program on their own PC, without having to actually
install it, was enough for 62% of students to choose this
option. This highlights the ease of access to a virtualized

software application, even for students who have not
previously used it. Of the students who relied on the
virtualized version of the software, 16 completed the
assignment entirely using the virtualized version of
WaterGEMS, and 2 used both the virtualized version of
the program and a lab-installation of the software. 13 of
29 students (45%) completed some or all of the
assignment on lab computers, and 2 students installed the
full version of the program on their own computers.

Of primary importance when considering student
feedback is that all students characterized the software to
be “easy” or “not too difficult”, with none selecting the
option that the software was “VERY difficult.” The
hydraulic design software utilized (i.e., WaterGEMS) is
actually quite sophisticated, and yet simple learning
activities were designed by the instructor and conducted
by the students, needing only a portion of an existing class
lecture. The perception among students that the software
was not too challenging to use, in spite of their being in
only an introductory fluid mechanics course, highlights
the potential low-hanging-fruit of integrating a small,
simple introductory exercise with which to initiate student
use of new software. The student feedback may also
reflect the value of a live in-class demonstration where
students first see the unfamiliar activity demonstrated,
then they complete it themselves, and then they observe a
classmate completing the steps a second time.

86% of students responded that the software homework
assignment that followed the in-class demonstration was
“very useful” or “somewhat useful” as a learning activity
that supported their understanding of the hydrostatic
equation. Thus, even though the WaterGEMS program’s
functionality goes well beyond calculating hydrostatic
pressures, students felt that the assignment – which
required them to investigate the effect of manipulating
several different parameters within the hydrostatic
equation – helped them to better learn the underlying
principles.

Of the five students who encountered problems when
using the virtualized version of the software, two reported
that they were unable to connect to the software after
loading the virtualization applet on their computer, one
encountered unexpected program termination (possibly
due to their internet connection being dropped), one
student reported that the program ‘didn’t work’, and one
student reported a ‘laggy’ (i.e., high latency) connection
when running the program virtually. These difficulties
could probably be overcome over time, and in any case
are a small fraction of the technical complaints and
challenges experienced when local installation of the
software has been attempted in previous semesters.

Conclusion

The learning activities described in this paper were
undertaken as a pilot test of two principles, the first of
which is enabled by the second: (1) a minimalist
introduction of hydraulic design software in the early
stages of a student’s learning of fundamental principles,
and (2) utilization of virtualization systems to simplify the
steps necessary to incorporate software instruction into a
course. On both accounts, this pilot test was encouraging
– students reported a favorable experience using the
hydraulic design software, had markedly fewer technical

JOURNAL OF ONLINE ENGINEERING EDUCATION, VOL. 4, NO. 2, ARTICLE 2

issues compared to previous instances where local
installation of the software was attempted, and all students
indicated an interest in receiving more software through
virtualization. Likewise, the instructor resources required
for virtualized-delivery of software were less intensive
than when software is installed locally, and thus continued
future implementation of this methodology is anticipated.

Virtualization represents an approach that may
significantly reduce the barriers that instructors face when
they wish to make software available to students. This is
particularly important for cases where the effort required
to make the software available has previously outweighed
the perceived benefits of doing so.

ACKNOWLEDGMENT

Brad Workman and Mike McSween are acknowledged
for their valuable assistance during the pilot study
described in this paper.

REFERENCES

[1] Jones, J.M. and Chou, T. “Work-in-Progress:
Creating an Intrusion Detection Experimental
Environment Using Cloud-Based Virtualization
Technology.” Proceedings of the 2012 ASEE
Annual Conference and Exposition, San Antonio,
Texas, June 10-13, 2012.

[2] Li, T., Thain, W.E., and Fallon, T.. “On the use
of virtualization for router network simulation.”
Proceedings of the 2010 ASEE Annual
Conference and Exposition, Louisville,
Kentucky, June 20-23, 2010.

[3] Bailey, M. and Ekstrom, J. “Teaching web
development with OS-virtualization.”
Proceedings of the 2009 ASEE Annual
Conference and Exposition, Austin, Texas, June
14-17, 2009.

AUTHOR

I. W. Wait is an Associate Professor at Marshall
University, Huntington, WV 25545 USA (email:
wait@marshall.edu).

This work was supported in part by Bentley Systems, Inc, who hosted the
software virtualization and provided technical support.

Submitted, August, 19, 2013.

